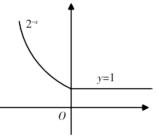
训练 3: 若函数 $f(x) = \begin{cases} -\frac{1}{2}x + m, & x < e \\ x - \ln x, & x \ge e \end{cases}$ 的值域是 $[e-1, +\infty)$,

则实数 m 的取值范围是

解析: 当 $x \ge e$ 时, $(x-\ln x)'=1-\frac{1}{x}>0$, 此时函数 f(x)在 $[e, +\infty)$ 上单增,值域是 $[e-1, +\infty)$. 当 x < e 时, $-\frac{1}{2}x + m$ 是减 函数, 其值域是 $\left(-\frac{e}{2}+m,+\infty\right)$.

因此 $(-\frac{e}{2}+m,+\infty)\subseteq [e-1,+\infty)$. 于是 $-\frac{e}{2}+m\geqslant e-1$,解得 $m \ge \frac{3e}{2}$ -1. 即实数 m 的取值范围是 $[\frac{3e}{2}$ -1, +∞).

4. 查解函数不等式


例 4. (2018 年高考课标 I 卷文 12) 设函数 f(x)= $\begin{cases} 2^{-x}, x \leq 0 \\ \end{cases}$ 则满足 $f(x+1) \leq f(2x)$ 的 x 的取值范围是 ()

A. $(-\infty, -1]$ B. $(0, +\infty)$ C. (-1, 0) D. $(-\infty, 0)$

法 1 (图像法): 首先根据分段函数的解析式, 画出对应 范围内的图像.

从图像中可以看出,要 使 f(x+1) < f(2x) 成立、必须 且只须 $\begin{cases} 2x < 0, \\ 2x < x + 1, \end{cases}$ 解得 x < 0.故洗 D.

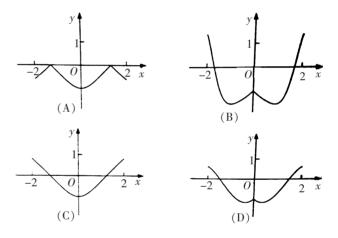
法 2 (特殊值法): 取 $x = -\frac{1}{2}$,

则
$$f(-\frac{1}{2}+1)=f(\frac{1}{2})=1, f(2\cdot(-\frac{1}{2}))=f(-1)=2.$$
 因此, $f(-\frac{1}{2}+1)$
< $f(2\cdot(-\frac{1}{2}))$, 适合不等式 $f(x+1)< f(2x)$, 排除 A, B.

再取 x=-1, 则 f(-1+1)=f(0)=1, $f(2\cdot(-1))=f(-2)=4$, 因此 $(-1+1) < f(2 \cdot (-1))$, 适合不等式 f(x+1) < f(2x), 排 除 C. 故选 D.

点评: 本题是已知函数值的大小, 反过来确定自变量的 取值范围,属于逆向设置问题.主要考查分段函数的图像、单 调性与数形结合的思想. 法1是根据分段函数的解析式、快速 准确地画出分段函数的图像来确定单调性和等价的不等式组。 再求自变量的范围. 法 2 则是利用特殊值法, 根据"命题在一 般情况下为真,则在特殊情况下也为真"、"命题在特殊情况 下为假,则在一般情况下也为假"迅速排除错误答案.对于某 些有关函数的图像、函数值、参数范围、函数不等式、最值 等问题的选择题,有时运用"特殊值法",往往事半功倍.

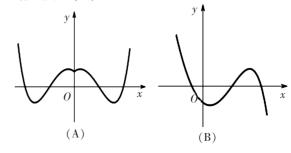
训练 4: (2017 年高考课标Ⅲ卷理 15) 设函数 f(x)= $\begin{cases} x+1, & x \leq 0 \\ 2, & x = 0 \end{cases}$ 则满足 $f(x)+f(x-\frac{1}{2})>1$ 的 x 的取值范围是 _____. 解析:数 0, $\frac{1}{2}$ 将 x 轴分成三段,分别讨论:


- (1) $\exists x \le 0$ 时, $x-\frac{1}{2}<0$, 则 $x+1+x-\frac{1}{2}+1>1$, 所以 $-\frac{1}{4}<$
- (2) 当 $0 < x \le \frac{1}{2}$ 时, $x \frac{1}{2} \le 0$, 则 $2^x + x \frac{1}{2} + 1 > 1$, 所以 $0 < x \le 1$ $x \leq \frac{1}{2}$.
 - (3) 当 $x>\frac{1}{2}$ 时, x>0, 则 $2^{x}+2^{\frac{(x+\frac{1}{2})}{2}}+2>1$, 所以 $x>\frac{1}{2}$.

综上可知,满足 $f(x)+f(x-\frac{1}{2})>1$ 的x的取值范围是 $\left(-\frac{1}{4},+\infty\right)$.

5. 考查函数图像

8-e²<8-2.7²<1,排除 B. 故选 D.


例 5.函数 $y=2x^2-e^{|x|}$ 在 [-2, 2] 上的图像大致为 (

解析: $y=f(x)=\begin{cases} 2x^2-e^x, & (0 \le x \le 2) \\ 2x^2-e^{-x}, & (-2 \le x < 0) \end{cases}$ 当 $0 \le x \le 2$ 时, f'(x)= $4x-e^x$. 此时, $f(\frac{1}{4})=1-e^{\frac{1}{4}}<0$,立即排除 A 和 C. 又计算 f(2)=

点评: 本题具有一定的思维深度, y=2x2-ell 是超越复合型 函数、用传统方法往往无法画出其图像. 其实符号 |x| 就暗示我 们可以分类变成分段函数来处理.解这种非常规型函数的图像 问题,要注意灵活运用导数法和特殊值法进行处理.

训练 5: (2018 年南昌市模考卷理 8) 函数 $y=x^2-e^{lxl}$ $(x \in R)$ 的图像可能是()

